Role and initiation mechanism of the interaction of glycoprotein Ib with surface-immobilized von Willebrand factor in a solid-phase platelet cohesion process.

نویسندگان

  • S Tsuji
  • M Sugimoto
  • M Kuwahara
  • K Nishio
  • Y Takahashi
  • Y Fujimura
  • Y Ikeda
  • A Yoshioka
چکیده

To know the role and initiation mechanism of the interaction of glycoprotein (GP) Ib with surface-immobilized von Willebrand factor (vWF), we examined the effect of shear stress levels on platelet binding to vWF-coated plates using a cone-and-plate type viscometer capable of loading various levels of shear stress. The extent of platelet binding to immobilized vWF reached a plateau at the shortest period tested (20 seconds) under high shear stress (90 dyne/cm2), whereas 9 to 12 minutes was necessary for saturable platelet binding under static conditions. This shear effect, which was found to be dependent on the vWF-GP Ib interaction, was observed even under the lowest shear stress (1.5 dyne/cm2) examined. In contrast with the high shear effect previously reported to initiate the interaction of GP Ib with soluble vWF, these results indicate that relatively low levels of shear stress can promote the interaction of GP Ib with surface-immobilized vWF. This effect of shear stress was observed regardless of the manner in which vWF was immobilized, suggesting that immobilization itself and not, as previously hypothesized, a conformational change in vWF induced by direct adsorption to the surface is responsible for the enhanced GPIb binding. Thus, the present findings suggest that the vWF-GP Ib interaction contributes optimally to rapid platelet cohesion on a thrombogenic surface when vWF is in a static state and when platelets are moved by an appropriate rheological force such as low shear stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress

We describe here the mechanism of platelet adhesion to immobilized von Willebrand factor (VWF) and subsequent formation of platelet-derived microparticles mediated by glycoprotein Ib (GPIb ) under high shear stress. As visualized in whole blood perfused in a flow chamber, platelet attachment to VWF involved one or few membrane areas of 0.05 to 0.1 m2 that formed discrete adhesion points (DAPs) ...

متن کامل

Interaction of von Willebrand factor with platelets and the vessel wall.

The initiation of thrombus formation at sites of vascular injury to secure haemostasis after tissue trauma requires the interaction of surface-exposed von Willebrand factor (VWF) with its primary platelet receptor, the glycoprotein (GP) Ib-IX-V complex. As an insoluble component of the extracellular matrix (ECM) of endothelial cells, VWF can directly initiate platelet adhesion. Circulating plas...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Gain of von Willebrand factor–binding function by mutagenesis of a species-conserved residue within the leucine-rich repeat region of platelet glycoprotein Ib

Glycoprotein (GP) Ib , a member of the leucine-rich repeat (LRR) protein family, mediates platelet adhesion to immobilized von Willebrand factor (VWF). We investigated the role in VWF binding of charged residues in the LRR region of GP Ib that are conserved in human, canine, and murine proteins. Substitution of His86 with either Ala or Glu resulted in a gain of VWF-binding function as judged by...

متن کامل

Cytosolic calcium changes in a process of platelet adhesion and cohesion on a von Willebrand factor-coated surface under flow conditions.

Recent flow studies indicated that platelets are transiently captured onto and then translocated along the surface through interaction of glycoprotein (GP) Ib with surface-immobilized von Willebrand factor (vWF). During translocation, platelets are assumed to be activated, thereafter becoming firmly adhered and cohered on the surface. In exploring the mechanisms by which platelets become activa...

متن کامل

Platelet thrombus formation on collagen at high shear rates is mediated by von Willebrand factor-glycoprotein Ib interaction and inhibited by von Willebrand factor-glycoprotein IIb/IIIa interaction.

We studied the role of von Willebrand Factor (vWF) in platelet thrombus formation in flowing blood by using a perfusion system and mutant forms of vWF lacking either interaction with glycoprotein Ib (GpIb) or with glycoprotein IIb/IIIa (alphaIIb-beta3). These mutants were added to the blood of patients with severe von Willebrand's disease (vWD) or to normal blood reconstituted with a human albu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 88 10  شماره 

صفحات  -

تاریخ انتشار 1996